# CONTENTS OF VOLUME THIRTY-SEVEN

## NUMBER 1. Nutrition of Man

*Scientific Editor: J C WATERLOW*

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Thermogenesis and obesity</td>
<td>43</td>
</tr>
<tr>
<td>Nutrition and protein turnover in man</td>
<td>5</td>
</tr>
<tr>
<td>Diet and coronary heart disease</td>
<td>49</td>
</tr>
<tr>
<td>Protein nutrition in clinical practice</td>
<td>11</td>
</tr>
<tr>
<td>Essential fatty acid deficiency</td>
<td>59</td>
</tr>
<tr>
<td>The biochemistry and physiology of kwashiorkor and marasmus</td>
<td>19</td>
</tr>
<tr>
<td>Dietary fibre</td>
<td>65</td>
</tr>
<tr>
<td>Physiology of iron absorption and supplementation</td>
<td>25</td>
</tr>
<tr>
<td>Nutrition, bacteria and the gut</td>
<td>71</td>
</tr>
<tr>
<td>Trace elements: potential importance in human nutrition with</td>
<td>31</td>
</tr>
<tr>
<td>Lactation and infant nutrition</td>
<td>77</td>
</tr>
<tr>
<td>zinc and vanadium</td>
<td></td>
</tr>
<tr>
<td>Nutrition and ageing</td>
<td>83</td>
</tr>
<tr>
<td>Biochemical and clinical aspects of vitamin D function</td>
<td>37</td>
</tr>
<tr>
<td>Immunocompetence as a functional index of nutritional status</td>
<td>89</td>
</tr>
<tr>
<td>Biochemical and clinical aspects of vitamin D function</td>
<td></td>
</tr>
<tr>
<td>Diet, neurotransmitters and brain function</td>
<td>95</td>
</tr>
</tbody>
</table>

*Notes on Contributors 101*

## NUMBER 2. Psychobiology

*Scientific Editors: D M WARBURTON & A SUMMERFIELD*

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>105</td>
</tr>
<tr>
<td>Ontogeny of behaviour</td>
<td>159</td>
</tr>
<tr>
<td>Gene action and the analysis of behaviour</td>
<td>107</td>
</tr>
<tr>
<td>Conditioning and associative learning</td>
<td>165</td>
</tr>
<tr>
<td>Biometrical genetics and individual differences</td>
<td>115</td>
</tr>
<tr>
<td>Control of internal activities</td>
<td>169</td>
</tr>
<tr>
<td>Neurochemistry of behaviour</td>
<td>121</td>
</tr>
<tr>
<td>Brain mechanisms of mammalian memory</td>
<td>175</td>
</tr>
<tr>
<td>The control of drinking</td>
<td>127</td>
</tr>
<tr>
<td>Visual perception and perceptual disorder</td>
<td>181</td>
</tr>
<tr>
<td>Central nervous mechanisms related to feeding and appetite</td>
<td>131</td>
</tr>
<tr>
<td>Neurological impairment of cognitive processes</td>
<td>187</td>
</tr>
<tr>
<td>The physiology of appetite</td>
<td>135</td>
</tr>
<tr>
<td>Anxiety as a paradigm case of emotion</td>
<td>193</td>
</tr>
<tr>
<td>Intracranial self-stimulation</td>
<td>141</td>
</tr>
<tr>
<td>Motor control</td>
<td>147</td>
</tr>
<tr>
<td>Psychophysiology of abnormal behaviour</td>
<td>199</td>
</tr>
<tr>
<td>Hormones and human sexual behaviour</td>
<td>153</td>
</tr>
</tbody>
</table>

*Notes on Contributors 205*
NUMBER 3. Control of Growth

Scientific Editor: J M TANNER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Author/Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>207</td>
<td>J M Tanner</td>
<td>Factors related to birth weight and perinatal mortality</td>
</tr>
<tr>
<td>Control of cell reproduction</td>
<td>209</td>
<td>Sydney Sholl</td>
<td>Harvey Goldstein</td>
</tr>
<tr>
<td>Cellular basis of skeletal growth during development</td>
<td>215</td>
<td>L Wolpert</td>
<td>Genetic and environmental factors in the control of growth in childhood</td>
</tr>
<tr>
<td>Growth and its control in early mammalian development</td>
<td>221</td>
<td>M H L Snow</td>
<td>Roberto J Rona</td>
</tr>
<tr>
<td>Regeneration and compensatory growth</td>
<td>227</td>
<td>Nigel Holder</td>
<td>Geographical and ethnic variations in human growth</td>
</tr>
<tr>
<td>Catch-up growth in man</td>
<td>233</td>
<td>J M Tanner</td>
<td>W A Marshall</td>
</tr>
<tr>
<td>Genetics of growth</td>
<td>239</td>
<td>D F Roberts</td>
<td>Endocrinological control of growth at puberty</td>
</tr>
<tr>
<td>Mathematical modelling of individual growth curves</td>
<td>247</td>
<td>M A Preece &amp; Ingeborg Heinrich</td>
<td>C G D Brook</td>
</tr>
<tr>
<td>Ultrasound assessment of fetal growth patterns</td>
<td>253</td>
<td>Hylton B Meire</td>
<td>Adipose tissue cellularity in childhood in relation to the development of obesity</td>
</tr>
<tr>
<td>Notes on Contributors</td>
<td>303</td>
<td></td>
<td>Anders Häger</td>
</tr>
</tbody>
</table>

INDEX TO VOLUME THIRTY-SEVEN

A

Activities, internal, control, 169–174
Acetylcholine as neural transmitter in behaviour, 122
Adaptation, behavioural, sources, 160
Adipose tissue, brown, and thermogenesis, 44
— — — modulations, and response to feeding, 46
— — — cellularity in childhood, relation to obesity, 287–290
Adolescence, growth spurt in, 283
Ageing and nutrition, 83–88
— body composition changes in, 83
— effect on organ and tissue function, 84
— metabolic changes, 84
— nutrient needs of elderly, 86
Alcohol, effect on coronary heart disease incidence, 53
Amblyopia, contrast sensitivity in, 181
— functional deficit in, 181
— visual function in, 182
Amino acids and energy, interrelationships, 15
— branched-chain, and protein synthesis, 16
— dose in clinical malnutrition, 15
— essential, α-keto acids of, 16
— quality and route of administration in malnutrition, 14
γ-Aminobutyric acid, 194

ANDERSON G H: Diet, neurotransmitters and brain function, 95–100
Androgen administration, effect on sexual behaviour, 155, 156, 157
— production at puberty, 281
Anorexia, protein metabolism changes in, 11
Antidiuretic hormone, 128, 129
Anxiety, anti-anxiety drugs, behavioural effects, 193
— as paradigm case of emotion, 193–197
Aphasia, bilateral tactile, 190
— optic, 190
Appetite, metabolic satiety, 136
— physiology, 135–140
— related central nervous mechanisms, 131–134
— starch-conditioned, 137
— suppression, starch-derived, 136
Associate learning and conditioning, 165–168
Atheroma, regression, 55
Atherosclerosis, dietary prevention, 55
Attention disorders, psychophysiological studies, 200

B

BANCROFT J: Hormones and human sexual behaviour, 153–158
BATESON P: Ontogeny of behaviour, 159–164
Behaviour, abnormal, psychophysiology of.
— adaptedness, sources, 160
— animal, analysis, 116
— central nervous system transmitters, 121
— chemical transmitter coding, 121
— development, analysis, 163
— regulation, 163
— sensitive periods, 162
— stages, 162
— genetics, 107–113, 116
— human, analysis, 118
— biometrical analysis, 115–120
— implications of neurochemical behaviour, 124
— innate, 160
— labile, 161
— multiple influences on, 161
— neurochemistry, 121–125
— neurological mutations, 112
— ontogeny, 159–164
— origins, 159
— sources of individual differences, 159
— stable, 161
Behavioural pleiotropy, 110
Benzodiazepines, 194
Biofeedback of visceral activity, 169
Biographical notes on contributors, 101, 205, 303
INDEX TO VOLUME THIRTY-SEVEN

Birth weight and perinatal mortality, related factors, 259–264
  — effect of gestation length, 261
  — genetic influence, 242
"Blindness", 183
Body fat, changes at puberty, 284
  — estimation in childhood, 287
  — fluid volumes, regulation in protein-energy malnutrition, 21
  — weight for height, geographical and ethnic variations, 275
Bone age, geographical and ethnic variations, 277
  — diseases affecting growth, 297, 298
  — growth plates, 217
  — vitamin D function in, 38
BOOTH D A: The physiology of appetite, 135–140
  — Brain function and diet, 95–100
    — lateral dysfunction in psychoses, 202
    — lesions, effect on visual perception, 183, 184
    — mechanisms of memory, 175–180
    — nutrient metabolism, 95
  — Breast development at puberty, 283
    — feeding, optimization, 81
    — milk, nutritional implications, 79
    — output, 78
BRENER J: Control of internal activities, 169–174
BROOK C G D: Endocrinological control of growth at puberty, 281–285
BURNT B & CONNOLLY K J: Gene action and the analysis of behaviour, 107–113

C

Carbohydrate diet, relation to coronary heart disease incidence, 52
Cartilage, cellular basis of growth, 216, 217
Catecholamine pathways, role in feeding, 134
Cells, cycle, 210
  — theories of, 213
  — geometry, 212
  — growth factors, 212
  — mortality and immortality, 213
  — reproduction, characteristics, 209
  — control, 209–214
  — in intact animals, 210
  — theories of, 213
  — spatial distribution, 212
Cellulose, fate in gut, 65, 68
Cerebellum, neurophysiology, 149
CHANDRA R K: Immunocompetence as a functional index of nutritional status, 89–94
Child, growth rate, regulation, 233
  — stature, geographical and ethnic variations, 274
  — weight for height, geographical and ethnic variations, 275
Childhood growth, effect of genetic and environmental factors, 265–272
Cholesterol concentrations and coronary heart disease, 49, 51
Cholinergic arousal pathway, function, 123, 124

D

Chromium, importance in nutrition, 31
Chromosome abnormalities, effect on growth, 291–295, 297
  — in fetal growth, 242
Cognition, development, 119
  — Cognitive processes, modularity, 187
  — neurological impairment, 187–192
Colliculus, superior, effect of lesions, 183
  — physiology, 183
Conditioning and associative learning, 165–168
  — and causal relevance, 167
  — and learned irrelevance, 166
  — event correlations in, 165
CONNOLLY K J, see BURNET B, 107
Contributors, biographical notes on, 101, 205, 303
Copper, importance in nutrition, 31
Coronary heart disease, see Heart disease, coronary
Corpus striatum, lesions, effect on visual perception, 184
Cortex, extrastriate, and disorders of sensory analysis, 184
COWARD W A & LUNN P G: The biochemistry and physiology of kwashiorkor and marasmus, 19–24
CUMMINGS J H: Dietary fibre, 65–70

E

D A DEAN, see REDG RAVE P, 141
DICKINSON A: Conditioning and associative learning, 165–168
Diet, neurotransmitters and brain function, 95–100
  — relation to coronary heart disease, 49–58
  — unbalanced, effect on protein metabolism, 11
Dopamine neurones, stimulation, and intracranial self-stimulation, 144
  — transmission and intracranial self-stimulation, 145
Down syndrome, effect on growth, 291
Drinking, cellular stimuli, 127
  — control, 127–130
  — extracellular thirst stimuli, 127
  — maintenance and termination, 129
Drosophila, behavioural systems, 109
  — chromosomes, 108
  — sexual behaviour, 109
Drugs, teratogenic effects, 299
Dysthria, deep, 187, 188, 190
  — neglect, 188
  — word-form, 189
Dysleptic syndromes, acquired, 187
Dysmorphology and short stature, 297–302

F

Fat, changes at puberty, 284
Fat-cell growth in infants, children and adolescents, 288
  — number, determination in childhood, 288
  — size, determination in childhood, 287
Fatty acids, dietary, and coronary heart disease, 51
  — and myocardial metabolism, 54
  — essential, and thrombosis, 53
  — biochemistry, 59
  — deficiency, 59–64
  — and coronary heart disease, 52, 53
  — in aetiology of disease, 63
  — requirements, 61
  — status, assessment, 62
  — volatile, production in colon, 69
Feeding, related central nervous mechanisms, 131–134
  — role of catecholamine pathways, 134
  — role of lateral hypothalamus, 131
  — role of ventromedial hypothalamus, 133
Fetus, growth, genetic aspects, 239–242
  — patterns, ultrasound assessment, 253–258
  — role of chromosomes, 242
Fibre, dietary, 65–70
  — and coronary heart disease incidence, 52
  — definition of, 65
  — fate in gut, 65, 68
  — site of breakdown in gut, 67
Food, iron content, absorption, 26
  — taste and sight, central nervous responses, 131
FRANKEL T L, see RIVERS J P W, 59
FRASER D R: Biochemical and clinical aspects of vitamin D function, 37–42
FULKER D W: Biometrical genetics and individual differences, 115–120

G

Gamma-aminobutyric acid, see \(\gamma\)-Amino- butyric acid
Ganglia, basal, neurophysiological studies, 149
Gas production in the intestine, 69
Gastrointestinal mucosa, microflora, 73
Gene, abnormalities affecting growth, 298
  — action and analysis of behaviour, 107–113, 116
Genes, control of height, 266
  — pleiotropic, 110
Genetic factors in growth control in childhood, 265
Genetics, biometrical, and individual differences, 115–120
  — development, 115
  — of growth, 239–246
Genotype-environment interaction, 117
INDEX TO VOLUME THIRTY-SEVEN

Gestation length, effect on birth weight and perinatal mortality, 261
GOLDEN B E, see GOLDEN M H N, 31
GOLDEN M H N & GOLDEN B E: Trace elements: potential importance in human nutrition with particular reference to zinc and vanadium, 31–36
GOLSTEIN H: Factors related to birth weight and perinatal mortality, 259–264
Gonadotropin and reproduction, 282
—secretion, organizing effect on sexual behaviour, 154
GRACEY M S: Nutrition, bacteria and the gut, 71–75
GRAY J A: Anxiety as a paradigm case of emotion, 193–197
Growth, adolescent, models for, 248, 249
—and welfare policy, 271
—at puberty, endocrinological control, 281–285
—catch-up, as normal phenomenon in infancy, 236
—in man, 233–238
—compensatory, 231, 233, 234
—control of, 207–302
—genetic and environmental factors, 265–272
—in early mammalian development 221–226
—introduction to symposium, 207–208
—curves, mathematical modelling, 247–252
—effect of chromosome abnormalities, 291–295, 297
—effect of illnesses in childhood, 270
—failure, pathogenesis, 301
—fetal, genetic aspects, 239–242
—ultrasound assessment, 253–258
—genetics, 239–246
—geographical and ethnic variations, 273–279
—hormone, deficiency, 235
—humoral regulation, 231
—in ecological extremes, 277
—in infancy, 236
—patterns, and rate of maturation, 276
—postnatal, genetic influence, 243–246
—pre-adolescent, models for, 247, 249
—regulation, model for, 237
—relation to maternal care, 269
—skeletal, during development, cellular basis, 215–219
—spurt in adolescence, 283
Gut, microflora, control, 71

H
HÄGER A: Adipose tissue cellularity in childhood in relation to the development of obesity, 287–290
Heart disease, coronary, dietary prevention, 55
—epidemiology, 49
—in relation to diet, 49–58
Height, adult, geographical and ethnic variations, 273
—and body weight, geographical and ethnic variations, 275
—in childhood, geographical and ethnic variations, 274
—variation, genetic aspect, 266
HEINRICH L, see PREECE M A, 247
HOLDER N: Regeneration and compensatory growth, 227–232
Hormonal activation of sexual behaviour, 155
Hormones and human sexual behaviour, 153–156
Hunger, effect on lateral hypothalamus response to sight and taste of food, 131
Hypothalamus, lateral, response to brain-stimulation reward, 133
—response to food reward, 133
—role in feeding, 131
—neurotransmitters, role in feeding, 132
—ventromedial, role in feeding, 133

I
Immunocompetence as functional index of nutritional status, 89–94
Infant, growth standards, 77
—nutrition, importance of lactation, 77–82
—nutritional requirements, 78, 80
Infusions, intravenous, hypocaloric, effect on protein metabolism, 11
Inheritance, polygenic, 115
Intestine, bacterial contamination, effect on function, 72
—microflora, control, 71
—in malnutrition, 71
—small, mucosa, vitamin D function in, 38
Intracranial self-stimulation, 141–146
Iron absorption, physiology, 25–30
—regulation, 25
—supplementation, 27
Irrelevance, learned, 166
Isoenzymes, tissue specificity, 240
IVERSEN S D: Motor control, 147–152

J
JACKSON A A, see WATERLOW J C, S
JAMES W P T & TRAYHURN P: Thermogenesis and obesity, 43–48
JEEJEBHOY K N: Protein nutrition in clinical practice, 11–17

K
α-Keto acids of essential amino acids, 16
Kidney disease, protein metabolism in, 16
—role in extracellular thirst, 128
—vitamin D function in, 38
Klinefelter syndrome, growth data, 293
Kwashiorkor, biochemistry and physiology, 19–24
—pathogenesis, 20
—plasma proteins in, 21

L
Lactation and infant nutrition, 77–82
—energy and nutrition requirements in, 78
Learning, associative, and conditioning, 165–168
—causal relevance, 167
—event correlations in, 165
—genetics, 111
—learned irrelevance, 166
—mechanisms, 167
—visceral, 169–174
Limb growth, 215
—regeneration, 227, 229
Lipid levels in blood, relation to coronary heart disease, 49
—plasma, effect of dietary changes, 50
Lipoprotein metabolism, relation to coronary heart disease, 53
Liver disease, protein metabolism in, 16
—reduced plasma protein synthesis in, 12
—protein turnover changes, 6
—regeneration, 220
LUNN P G, see COWARD W A, 19

M
Malformation due to environmental agents, 299
—syndromes of known aetiology, 297–300
Malnutrition, effect on protein turnover, 7
—immunological changes in, 89
—intestinal function in, 73
—intestinal microflora in, 71
—protein-energy, 19
—regulation of body fluid volume in, 21
Marasmus, biochemistry and physiology, 19–24
—pathogenesis, 19
—plasma proteins in, 22
MARSHALL W A: Geographical and ethnic variations in human growth, 273–279
Maternal care, effect on child growth, 269
MEIRE H B: Ultrasound assessment of fetal growth patterns, 253–258
Membrane permeability changes in protein-energy malnutrition, 21
Memory, abstract, 175
—neural substrates, 178
—association, neural substrates, 176
—brain mechanisms, 175–180
—categories, 175
—representational, neural substrates, 177
—stimulus–response, 175
Menarche, age at, geographical and ethnic variations, 276
Metabolic rate and protein turnover, 6
Microbial growth in gut, promotion by dietary fibre, 69
Minerals, effects on brain function, 99
—effects on neurotransmitter metabolism, 98
Motor area, supplementary, 152
—control, 147–152
—cortex, neurophysiology, 149
—system, pyramidal, 147
MUNRO H N: Nutrition and ageing, 83–88
Muscle changes at puberty, 284
—growth, cellular basis, 217
—protein turnover changes, 6
—vitamin D function in, 39

N
NARASINGA RAO B S: Physiology of iron absorption and supplementation, 25–30
### INDEX TO VOLUME THIRTY-SEVEN

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Neoplasms, effect on protein metabolism</td>
</tr>
<tr>
<td>109</td>
<td>Neural transmission in <em>Drosophila</em></td>
</tr>
<tr>
<td>121–125</td>
<td>Neurochemistry of behaviour</td>
</tr>
<tr>
<td>112</td>
<td>Neurological behavioural mutations</td>
</tr>
<tr>
<td>132</td>
<td>Neurones, hypothalamic, role in feeding</td>
</tr>
<tr>
<td>196</td>
<td>Neurotransmitter precursors, dietary</td>
</tr>
<tr>
<td>96</td>
<td>Nutrition and ageing, 83–88</td>
</tr>
<tr>
<td>71–75</td>
<td>— bacteria, and the gut</td>
</tr>
<tr>
<td>104</td>
<td>— of man, 1–104</td>
</tr>
<tr>
<td>1–4</td>
<td>— introduction to symposium</td>
</tr>
<tr>
<td>268</td>
<td>— relation to growth</td>
</tr>
<tr>
<td>89–94</td>
<td>Nutritional status, relation to immunocompetence</td>
</tr>
<tr>
<td>175–180</td>
<td>OAKLEY D A: Brain mechanisms of mammalian memory</td>
</tr>
<tr>
<td>43–48</td>
<td>Obesity and thermogenesis</td>
</tr>
<tr>
<td>268</td>
<td>— in childhood, health effects</td>
</tr>
<tr>
<td>297–300</td>
<td>— relation to adipose tissue cellularity in childhood</td>
</tr>
<tr>
<td>283</td>
<td>Oestradiol</td>
</tr>
<tr>
<td>157</td>
<td>Oestrogen, effect on sexual behaviour</td>
</tr>
<tr>
<td>202</td>
<td>OLIVER M F: Diet and coronary heart disease</td>
</tr>
<tr>
<td>49–58</td>
<td>Orientation disorders in schizophrenia</td>
</tr>
<tr>
<td>301</td>
<td>Osteochondroplasias, pathophysiology</td>
</tr>
<tr>
<td>40</td>
<td>Osteomalacia related to vitamin D deficiency</td>
</tr>
<tr>
<td>40</td>
<td>— with renal or hepatic disease</td>
</tr>
<tr>
<td>297–302</td>
<td>PARKIN J M: Dysmorphology and short stature</td>
</tr>
<tr>
<td>292</td>
<td>Patau syndrome, effect on growth</td>
</tr>
<tr>
<td>77</td>
<td>PAUL A A, see ROWLAND M G M</td>
</tr>
<tr>
<td>181–186</td>
<td>Perinatal mortality and birth weight, related factors</td>
</tr>
<tr>
<td>259–264</td>
<td>— effect of gestation length</td>
</tr>
<tr>
<td>262</td>
<td>— rates, 262</td>
</tr>
<tr>
<td>119</td>
<td>Personality, effect of home background</td>
</tr>
<tr>
<td>119</td>
<td>— effect of social factors</td>
</tr>
<tr>
<td>22</td>
<td>Plasma proteins in kwashiorkor and marasmus</td>
</tr>
<tr>
<td>66</td>
<td>Polysaccharides non-cellulosis, fate in gut</td>
</tr>
<tr>
<td>136</td>
<td>PREECE M A &amp; HEINRICH T: Mathematical modelling of individual growth curves</td>
</tr>
<tr>
<td>247–252</td>
<td>Prolactin</td>
</tr>
<tr>
<td>283</td>
<td>Protein deficiency, assessment in clinical situations</td>
</tr>
<tr>
<td>20</td>
<td>— failure of adaptation to, 20</td>
</tr>
<tr>
<td>52</td>
<td>— diet, effect on lipoprotein</td>
</tr>
<tr>
<td>11</td>
<td>— metabolism, altered, causes</td>
</tr>
<tr>
<td>16</td>
<td>— in hepatic disease</td>
</tr>
<tr>
<td>16</td>
<td>— in renal disease</td>
</tr>
<tr>
<td>17</td>
<td>— nutrition in clinical practice</td>
</tr>
<tr>
<td>13</td>
<td>— repletion in clinical situations</td>
</tr>
<tr>
<td>31</td>
<td>— requirements in malnutrition, trauma, sepisi and neoplasia</td>
</tr>
<tr>
<td>14</td>
<td>— synthesis, provision of promoting co-factors</td>
</tr>
<tr>
<td>15</td>
<td>— turnover, 5–10</td>
</tr>
<tr>
<td>8</td>
<td>— changes in muscle and liver</td>
</tr>
<tr>
<td>12</td>
<td>Sepsis, effect on protein metabolism</td>
</tr>
<tr>
<td>282–283</td>
<td>— chromosome characteristics, secondary</td>
</tr>
<tr>
<td>292–294</td>
<td>— effect on growth</td>
</tr>
<tr>
<td>155</td>
<td>Sexual behaviour, hormonal activation</td>
</tr>
<tr>
<td>153–158</td>
<td>— hormonal influences</td>
</tr>
<tr>
<td>109</td>
<td>— in <em>Drosophila</em></td>
</tr>
<tr>
<td>155–156</td>
<td>— in female, hormonal activation</td>
</tr>
<tr>
<td>156</td>
<td>— perimembranous pattern</td>
</tr>
<tr>
<td>155</td>
<td>— in male, hormonal activation</td>
</tr>
<tr>
<td>153</td>
<td>— differentiation, hormonal control</td>
</tr>
<tr>
<td>209–214</td>
<td>SHALL S: Control of cell reproduction</td>
</tr>
<tr>
<td>187–192</td>
<td>SHALLICE T: Neurological impairment of cognitive processes</td>
</tr>
<tr>
<td>215–219</td>
<td>Skeletal growth during development, cellular basis</td>
</tr>
<tr>
<td>277</td>
<td>Skeleton, maturation rate, geographical and ethnic variations</td>
</tr>
<tr>
<td>221–226</td>
<td>SNOW M H L: Growth and its control in early mammalian development</td>
</tr>
<tr>
<td>267</td>
<td>Social class and growth in childhood</td>
</tr>
<tr>
<td>21</td>
<td>Sodium balance in protein-energy malnutrition</td>
</tr>
<tr>
<td>169</td>
<td>Somatic–visceral interactions</td>
</tr>
<tr>
<td>148</td>
<td>Spinal cord, extrapyramidal projections</td>
</tr>
<tr>
<td>147</td>
<td>Sature, adult, geographical and ethnic variations</td>
</tr>
<tr>
<td>274</td>
<td>— in childhood, geographical and ethnic variations</td>
</tr>
<tr>
<td>274</td>
<td>— short, and dysmorphism</td>
</tr>
<tr>
<td>297–302</td>
<td>Stimulation, intracranial</td>
</tr>
<tr>
<td>141</td>
<td>Stimulus processing, early, disorders of</td>
</tr>
<tr>
<td>201</td>
<td>Strength, increase at puberty</td>
</tr>
<tr>
<td>52</td>
<td>Sucrose intake and coronary heart disease</td>
</tr>
<tr>
<td>233–238</td>
<td>TANNER J M: Catch-up growth in man</td>
</tr>
<tr>
<td>207–208</td>
<td>— Control of growth, Introduction to symposium</td>
</tr>
<tr>
<td>283</td>
<td>Testosterone</td>
</tr>
<tr>
<td>43–48</td>
<td>Thermogenesis and obesity</td>
</tr>
<tr>
<td>43</td>
<td>— comparative aspects</td>
</tr>
<tr>
<td>44</td>
<td>— non-shivering, and brown adipose tissue</td>
</tr>
<tr>
<td>43</td>
<td>Thermoregulatory, and energy balance</td>
</tr>
<tr>
<td>127</td>
<td>Thirst, 127</td>
</tr>
<tr>
<td>128</td>
<td>— cardiac receptors</td>
</tr>
<tr>
<td>128</td>
<td>— extracellular, role of kidney</td>
</tr>
<tr>
<td>31–36</td>
<td>Trace elements, importance in nutrition</td>
</tr>
<tr>
<td>235–258</td>
<td>Trauma, effect on protein metabolism</td>
</tr>
<tr>
<td>43</td>
<td>TRAYHURST P, see JAMES W P T</td>
</tr>
<tr>
<td>43</td>
<td>Trisomies, autosomal, effect on growth</td>
</tr>
<tr>
<td>291</td>
<td>Turner syndrome, growth in, 294</td>
</tr>
<tr>
<td>298</td>
<td>Ultrasound assessment of fetal growth patterns</td>
</tr>
<tr>
<td>35</td>
<td>Vanadium, importance in nutrition</td>
</tr>
</tbody>
</table>
INDEX TO VOLUME THIRTY-SEVEN

VENABLES P H: Psychophysiology of abnormal behaviour, 199–203

Visceral activity, relation between detection and control, 172
—control, differentiation, 170
——learned, 169
——learning, as model for studying visceral control, 171
—biofeedback, 171

Visceral–somatic interactions, 169
Visual pathway, contrast sensitivity, 181
—perception, and perceptual disorder, 181–186
—effect of cerebral lesions, 183, 184

Vitamin D deficiency, effects, 40
—function, biochemical and clinical aspects, 37–42

———————- in bone, 38
———————- in kidney, 38
———————- in muscle, 39
———————- in small intestinal mucosa, 38
———————- metabolism, functional, 37
———————- resistance, genetically determined, 41
———————- supply problem, 39

Vitamins, effects on brain function, 99
—effects on neurotransmitter metabolism, 98

W

WARBURTON D M: Neurochemistry of behaviour, 121–125
—Psychobiology. Introduction to symposium, 105–106

Water balance in protein-energy malnutrition, 21

WATERLOW J C & JACKSON A A: Nutrition and protein turnover in man, 5–10

WHITEHEAD R G, see ROWLAND M G M, 77

WIDDOWSON E: Nutrition of man. Introduction to symposium, 1–4

WOLPERT L: Cellular basis of skeletal growth during development, 215–219

Z

Zinc, importance in nutrition, 32

Printed in Great Britain by Spottiswoode Ballantyne Ltd., Colchester and London
Nutrition of Man: Introduction

Scientific research on the nutrition of man began with the work of C Voit, O Rubner and W D Atwater at the end of the last century. They measured the protein, fat and carbohydrate in foods, and their energy value, and studied the effects of foods and nutrients on metabolism. Although Hopkins’ first paper demonstrating the importance of accessory food factors was published in 1912, vitamins played no part in food policy during the First World War. However, the curative value of one of the fat-soluble vitamins for rickets in children was clearly demonstrated just after the war by Dame Harriette Chick and her colleagues in Vienna, and the fact that sunlight on the skin could substitute for the vitamin in cod liver oil by mouth.